Skip to content
Extra Form
Abstract Drawings such as piping and instrument diagrams (P&ID) or ship safety plans have various equipment and components (lines, signs, and text). Every drawing has rules to express these objects with specific symbols. Generally, these drawings are very complex because they are large in size and consist of relationships between several objects. Therefore, the drawing investigators spend countless time and labor.
For the above reasons, this study uses a deep learning model that has been actively researched recently. An object detection model based on deep learning can quickly find various objects within the drawing. However, the drawing differs from the common images in size and characteristics, generally used as an input in deep learning. Therefore, we proposed a series of procedures for applying the deep learning model to the drawing. This study proposed an object detection algorithm specialized for drawings by combining the non-maximum suppression (NMS) algorithm with the sliding window algorithm. YOLOv7 was selected as an object detection model, which showed the best accuracy by comparing various deep learning models. First, we made a detection window that slides on the drawing. Then, the NMS algorithm was applied to remove duplicate objects from the overall detection results.
Training a deep learning model requires a large amount of training data, but it takes a lot of time to label drawings manually. Therefore, we proposed a data generation model for training data. Objects and background images were extracted from several drawings, and training data were generated by randomly mixing them as material and base. The optimal parameters for training data were selected by comparing the accuracy of the drawings. All models used in this study were trained only with the generated virtual training data.
Knowing how many objects are placed in each division of the ship is important in the inspecting process. Therefore, we developed an algorithm that automatically recognizes the division of the ship and organizes the types and numbers of equipment placed in each division. Furthermore, we developed an algorithm that can obtain the connection relationship between objects and detailed specification of objects by recognizing lines and texts connected to each object.
The method proposed in this study was applied to several actual plans. We confirmed the effectiveness of the proposed method by obtaining high average accuracy. By applying the proposed method, the review procedure, which took several days, can be reduced dramatically to a few minutes per drawing.
Publication Date 2023-06-22
Min-Chul Kong, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, Jeongyoul Lee, Jongoh Kim, Gapheon Lee, "A Detection Method of Objects with Text in Drawings Based on Deep Learning", Proceedings of ISOPE(International Society of Offshore and Polar Engineers) 2023, Ottawa, Canada, 2023.06.19-23

  1. No Image 13Feb
    by SyDLab
    in International Conference

    Min-Chul Kong, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, Jeongyoul Lee, Jongoh Kim, Gapheon Lee, "A Detection Method of Objects with Text in Drawings Based on Deep Learning", Proceedings of ISOPE 2023, Ottawa, Canada, 2023.06.19-23

  2. Myung-Il Roh, "Applications of Deep Learning in Ship Design, Production, and Operation Stages", Proceedings of ICDM(International Conference on Decarbonization and Digitalization in Marine Engineering) 2022, Siheung, Korea, 2022.04.28-29

  3. Myung-Il Roh, "Physics-based Simulation for Design, Production, and Installation of Ships and Offshore Structures", International Symposium on Computational Design and Engineering, Ho Chi Minh, Vietnam, 2017.12.13-16

  4. Myung-Il Roh, "Simulation Based Engineering for Ship and Offshore Plant", International Ocean Technology Conference & Expo (IOTCE 2015), Qingdao, China, 2015.09.01-03

  5. Ki-Su Kim, Myung-Il Roh, Seung-Ho Ham, Sol Ha, "Evacuation Analysis of Passenger Ships Considering Intermediate Flooding", Proceedings of International Symposium on PRADS 2022, Dubrovnik, Croatia, pp. 628-632, 2022.10.09-13

  6. Jin-Hyeok Kim, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, "Estimation of the Hydrodynamic Performance of the Parameterized Hull Forms Using Deep Learning", Proceedings of G-NAOE 2022, Changwon, Korea, 2022.11.06-10

  7. Yeongmin Jo, Myung-Il Roh, Hye-Won Lee, Donghun Yu, "A Ship Tracking Method under Dynamic Characteristic Changes with LSTM", Proceedings of G-NAOE 2022, Changwon, Korea, 2022.11.06-10

  8. Do-Hyun Chun, Myung-Il Roh, In-Chang Yeo, "Optimum Design of Membrane-type LNG Tanks for Installing Insulation", Proceedings of G-NAOE 2022, Changwon, Korea, 2022.11.06-10

  9. Dong-Guen Jeong, Myung-Il Roh, Ki-Su Kim, Jun-Sik Lee, Dae-Hyuk Kim, Wang-Seok Jang, "A Method for Route Planning of Small Ships in Coastal Areas", Proceedings of ICDM 2022, Si-Heung, Korea, 2022.04.28-29

  10. Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Seung-Ho Ham, "A Block Lifting Method with Wire Ropes Based on Deep Reinforcement Learning", Proceedings of ICDM 2022, Si-Heung, Korea, 2022.04.28-29

Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 15 Next
/ 15

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내

이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소