Skip to content
Extra Form
Abstract Ships and offshore structures are constructed in a way that several units of blocks are assembled. In the block lifting process, a block is controlled indirectly through the interaction of the crane, hooks, equalizers, and wire ropes (simply, wires). Therefore, it is difficult to control the unexpected movement motions of the block accurately with several connected objects. Furthermore, it is important to construct a robust control model to cope with the modeling uncertainty of the block and the change of lug arrangement. In this study, we proposed the automatic control of the block lifting process with deep reinforcement learning (DRL), which can provide a robust control under uncertainties. The state of a block and wires, such as position, orientation and angular velocity of the block, and the lifting speed of each wire, were used as the input of DRL. Then, the lifting speed of each wire was obtained as the output action of DRL. The reward was applied to reduce the roll and pitch angle of the block and to stabilize the speed of block lifting. The proposed method was applied to various simulation examples of block lifting and compared with traditional control algorithms. As a result, it was confirmed that the proposed method could effectively control the block with unexpected motions due to the modeling uncertainty and the change of the lug arrangement.
Publication Date 2022-10-09

Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Seung-Ho Ham, "A Method for Automatic Control of Cranes for Block Lifting in Shipyard", Proceedings of International Symposium on PRADS(Practical Design of Ships and Other Floating Structures) 2022, Dubrovnik, Croatia, pp. 64, 2022.10.09-13


List of Articles
번호 분류 제목 Publication Date
11 International Conference Dong-Hoon Jeong, Myung-Il Roh, Seung-Ho Ham, Woo-Young Choi, Chan-Young Lee, Kyung-Min Seo, Dong-Chul Lee, "Simulation-Based Performances Analysis for Naval Ships at the Initial Design Stage", Proceedings of ISOPE 2016, Rhodes, Greece file 2016-06-30
10 International Conference Dong-Hoon Jeong, Myung-Il Roh, Seung-Ho Ham, Luman Zhao, Hye-Won Lee, Sol Ha, "Physics-based Simulation of Offshore Installation Operations Considering Ocean Environmental Loads and Operating Conditions", Proceedings of ASEM 2015, Korea file 2015-08-26
9 International Conference Dong-Guen Jeong, Myung-Il Roh, Ki-Su Kim, Jun-Sik Lee, Dae-Hyuk Kim, Wang-Seok Jang, "A Route Planning Method for Coastal Navigation of Small Ships", Proceedings of ICCAS 2022, Yokohama, Japan, pp. 153-156, 2022.09.13-15 file 2022-09-14
8 International Conference Dong-Guen Jeong, Myung-Il Roh, Ki-Su Kim, Jun-Sik Lee, Dae-Hyuk Kim, Wang-Seok Jang, "A Method for Route Planning of Small Ships in Coastal Areas", Proceedings of ICDM 2022, Si-Heung, Korea, 2022.04.28-29 2022-04-28
7 International Conference Do-Hyun Chun, Myung-Il Roh, Seung-Ho Ham, Hoon-Kyu Oh, Sang-Ok Lee, "Optimum Layout Design of Wedges of Panel for an LNG Tank Considering Amount of Resin Ropes", Proeedings of ISOPE 2019, Honolulu, Hawaii, pp. 1289-1292, 2019.06.16-21 file 2019-06-19
6 International Conference Do-Hyun Chun, Myung-Il Roh, In-Chang Yeo, "Optimum Design of Membrane-type LNG Tanks for Installing Insulation", Proceedings of G-NAOE 2022, Changwon, Korea, 2022.11.06-10 2022-11-07
» International Conference Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Seung-Ho Ham, "A Method for Automatic Control of Cranes for Block Lifting in Shipyard", Proceedings of PRADS 2022, Dubrovnik, Croatia, pp. 64, 2022.10.09-13 file 2022-10-09
4 International Conference Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Seung-Ho Ham, "A Crane Movement Control for Stability of Block Erection Based on Deep Reinforcement Learning", MIM 2019, Berlin, Germany, 2019.08.28-30 file 2019-08-28
3 International Conference Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Seung-Ho Ham, "A Block Lifting Method with Wire Ropes Based on Deep Reinforcement Learning", Proceedings of ICDM 2022, Si-Heung, Korea, 2022.04.28-29 2022-04-28
2 International Conference Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, "Deep Reinforcement Learning-Based Ship Collision Avoidance Considering Collision Risk", Proceedings of TEAM 2022, Istanbul, Turkey, pp. 268, 2021.12.06-07 file 2021-12-07
Board Pagination Prev 1 ... 5 6 7 8 9 10 11 12 13 14 Next
/ 14

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소