Skip to content
Extra Form
Abstract 해운사에서 경제 운항 경로를 선택하기 위해서는 해기상 데이터를 활용한 선박의 소요 마력 예측이 필요하다. 즉, 소요 마력 예측에는 수온, 파고, 풍속 등 해기상 데이터가 입력 값으로 활용되기에 해기상 데이터에 대한 예측이 선행되어야 한다. 다양한 예보 데이터의 활용이 가능하지만 데이터 송수신이 원활하지 않은 상황에서는 자체적인 해기상 데이터의 예측이 필요하다. 그러나 기존의 연구에서는 주로 파고, 파 주기 등 특정 해기상 데이터의 예측만 이뤄졌으며, 또한 특정 지역에 국한된 예측을 진행하였다. 따라서 본 연구에서는 파고, 파 주기, 파향, 풍속, 풍향, 유속, 유향, 수온 등 8가지 해기상 데이터를 딥 러닝 기법으로 예측하였으며, 이때 상관 분석 (correlation analysis)를 통해 해기상 데이터 간의 연관성을 파악한 후 딥 러닝 모델의 입력값을 선정하였다. 해기상 데이터의 예측을 위한 딥 러닝 모델로서 DFN (Deep Neural Network)과 LSTM (Long Short-Term Memory)를 이용하였으며, 학습을 위한 해기상 데이터는 ECMWF (European Centre for Medium-Range Weather Forecasts)와 HYCOM (Global Hybrid Coordinate Ocean Model)로부터 확보하였다. 예측 모델의 정확도를 높이기 위해 확보한 해기상 데이터에 존재하는 이상점 (outlier)을 제거하였으며, 또한 각 해기상 데이터별로 딥 러닝 모델, 입력 데이터의 종류, 입력 데이터의 기간, 출력 데이터의 기간 등을 변경하며 각 요소에 대한 모델의 정확도를 분석하였다. 본 연구에서는 해기상 데이터의 예측 모델을 전 세계 전 해역의 해기상 데이터를 예측하는데 활용하였으며, 적용 결과 그 효용성을 확인하였다.
Keywords: Ocean Environmental Data (해기상 데이터), Deep learning (딥 러닝), DFN (Deep Neural Network), LSTM (Long Short-Term Memory)
Publication Date 2019-05-17

이준범, 노명일, 김기수, 손명조, 한기민, 김대헌, "딥러닝 기법을 이용한 해기상 데이터 예측", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 491, 2019.05.15-17


  1. No Image 08Aug
    by
    in Domestic Conference

    이혜원, 노명일, 함승호, 전도현 "블록의 탑재 제어를 위한 갠트리 크레인의 제어기 설계 고도화", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 139, 2019.10.24-26

  2. No Image 08Aug
    by
    in Domestic Conference

    전도현, 노명일, 이혜원, 하지상, 진은석, 김인일, "딥 러닝 기반 자율 운항 선박의 충돌 회피 방법 연구", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 429, 2019.10.24-26

  3. No Image 08Aug
    by
    in Domestic Conference

    김진혁, 노명일, 공민철, "증강 현실 기술을 이용한 장비의 원격 운영 및 유지 보수 방법", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 196, 2019.10.24-26

  4. No Image 08Aug
    by
    in Domestic Conference

    이원재, 노명일, 이성준, 하지상, 석영수, 오민재, "선박 운항 시 주변 인지를 위한 물체 탐지, 추적 및 거리 추정 방법", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 431, 2019.10.24-26

  5. No Image 08Aug
    by
    in Domestic Conference

    하지상, 노명일, 이혜원, 은종호, 박종진, "실시간 AIS 데이터를 이용한 해상 충돌 회피 알고리즘 연구", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 430, 2019.10.24-26

  6. No Image 05Aug
    by
    in Domestic Conference

    노명일, "스마트 함정의 구현을 위한 설계 기술 연구", 함정기술연구회 하계연구발표회, 진해, 2019.07.18-19

  7. No Image 05Aug
    by
    in Domestic Conference

    오민재, 노명일, 김범수, 김용환, "선박의 운항 효율을 고려한 선형 변환 방법", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 480, 2019.10.24-2019.10.25

  8. No Image 02Apr
    by
    in Domestic Conference

    이원재, 노명일, 이성준, 석영수, 오민재, "스케일 정규화를 통한 딥러닝 기반의 선박 이미지 인식 정확도 향상 방법 연구", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 340, 2019.05.15-17

  9. No Image 02Apr
    by
    in Domestic Conference

    이성준, 노명일, 석영수, 이원재, 오민재, 김현수, "멀티스케일 및 다단계 탐지 방법을 활용한 고성능 선박 이미지 인식 방법", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 333, 2019.05.15-17

  10. No Image 02Apr
    by
    in Domestic Conference

    이종혁, 노명일, 김진혁, 이성준, 함승호, "선박 운항의 원격 모니터링을 위한 디지털 트윈 플랫폼", 2019년도 대한조선학회 춘계학술발표회, 제주, p. 341, 2019.05.15-17

Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 26 Next
/ 26

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소