Skip to content
Extra Form
Abstract Recently, maritime accidents caused by human factors have increased according to the increase in the number of ships for sea transportation. Therefore, the autonomous navigation systems that find appropriate avoidance routes in a complex marine environment with various obstacles is attracting attention. In this study, we proposed a collision avoidance method using deep reinforcement learning (DRL) that generates an appropriate control action. DRL-based collision avoidance method derives the required rudder angle of own ship with given state of the own ship and target ship such as position, speed, and heading. To achieve the appropriate collision avoidance, it is necessary to assess the collision risk of the target ship accurately. Therefore, the probabilistic collision risk assessment method was proposed to predict the collision risk of the target ship with the probability distribution of the data. The probability distribution was calculated through the multivariate normal distribution of the four-dimensional variables of the position, speed, and heading angle of the target ship. The collision risk of the target ship was calculated through the probability distribution for each variable and the CPA (Closest Point of Approach)-based collision risk assessment method. To verify the proposed method, we applied the DRL-based collision avoidance method and the collision risk assessment method to various scenarios. The proposed method reliably avoided collisions through flexible paths for complex situations.
Publication Date 2021-12-07

Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, "Deep Reinforcement Learning-Based Ship Collision Avoidance Considering Collision Risk", Proceedings of TEAM(Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structures) 2022, Istanbul, Turkey, pp. 268, 2021.12.06-08


List of Articles
번호 분류 제목 Publication Date
537 Domestic Conference 한인수, 노명일, 공민철, 이정렬, "사용자의 질의 의도를 고려한 생성형 AI 기반의 선박 규정 검색 방법", 2024년도 대한조선학회 추계학술발표회, 창원, p. 435, 2024.11.14-11.15 file 2024-11-15
536 Domestic Conference 김하연, 노명일, 안도혁, 공민철, 여인창, "해상 장애물 추적을 위한 다목적 시뮬레이션 프로그램 개발", 2024년도 대한조선학회 추계학술발표회, 창원, p. 533, 2024.11.14-11.15 file 2024-11-15
535 Domestic Conference 공민철, 노명일, 한인수, 최성원, 김미진, 김정연, 이인석, "선체 내 장애물을 고려한 개선된 배관 라우팅 방법", 2024년도 대한조선학회 추계학술발표회, 창원, p. 368, 2024.11.14-11.15 file 2024-11-14
534 Domestic Conference 김진혁, 노명일, 여인창, "유체 역학적 성능을 고려한 MLP 기반의 선형 최적화 방법", 2024년도 대한조선학회 추계학술발표회, 창원, p. 14, 2024.11.14-11.15 file 2024-11-14
533 Domestic Conference 안도혁, 노명일, 여인창, 전도현, "강화 학습 기반 해상 크레인의 블록 탑재 제어 방법", 2024년도 대한조선학회 추계학술발표회, 창원, p. 534, 2024.11.14-11.15 file 2024-11-14
532 Domestic Conference 최성원, 노명일, 여인창, 유원철, 한선도, "과거 운항 기록을 반영한 소형 선박의 경로 계획 방법", 2024년도 대한조선학회 추계학술발표회, 창원, p. 152, 2024.11.14-11.15 file 2024-11-14
531 Domestic Conference 박동규, 노명일, 공민철, 여인창, "요구 조건을 고려한 소형 함정의 초기 제원 최적화 방법", 2024년도 대한조선학회 추계학술발표회, 창원, p. 213, 2024.11.14-11.15 file 2024-11-14
530 Domestic Conference 김윤식, 노명일, 김하연, 여인창, 손남선, "해상 장애물 추적을 위한 영상 내 수평선 탐지 방법", 2024년도 대한조선학회 추계학술발표회, 창원, p. 532, 2024.11.14-11.15 file 2024-11-14
529 Domestic Conference 여인창, 노명일, 공민철, 유동훈, "소형 무인선을 위한 접이안 경로 계획 방법", 2024년도 대한조선학회 추계학술발표회, 창원, p. 523, 2024.11.14-11.15 file 2024-11-14
528 International Conference Min-Chul Kong, Myung-Il Roh, In-Su Han, Mijin Kim, Jeoungyoun Kim, "A Method for Pipe Auto-routing Using Graph and Octree Structure", Proceedings of G-NAOE 2024, Southampton, UK, 2024.11.05-09 file 2024-11-05
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 54 Next
/ 54

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소