Skip to content
Extra Form
Abstract Autonomous ships require an awareness system to recognize surrounding obstacles during navigation. In general, the awareness system uses data obtained by sensors such as RADAR (RAdio Detection And Ranging) and AIS (Automatic Identification System). However, autonomous ships operating in the marine environment should recognize small obstacles, including buoys that cannot be detected by RADAR and boats without the AIS system. Just as the tracking accuracy is improved by the fusion of sensors with different characteristics, a camera with a wide-angle of view or a camera capable of night detection can complement each other. In addition, tracking accuracy can be further improved if camera images from multiple viewpoints can be used in the case of detection through multiple ships. Therefore, in this study, camera-based detection and tracking methods were developed to be aware of marine obstacles that could not be recognized by RADAR or AIS. Firstly, the Convolutional Neural Network (CNN) based YOLO v5 model, combined with an attention module, was suggested for obstacle detection. Subsequently, the position and speed of the detected obstacles were tracked using the extended Kalman Filter. Finally, the tracks of the obstacles from various cameras mounted on multiple ships were integrated using the sensor fusion method to increase the accuracy. The field tests were conducted with a USV (Unmanned Surface Vessel) for various ship encountering scenarios to verify the developed methods in the actual marine environment. As a result, it was confirmed that stable and accurate detection and tracking of marine obstacles was performed using multiple cameras.
Publication Date 2022-04-28

Jeong-Ho Park, Myung-Il Roh, Hye-Won Lee, Jisang Ha, Yeong-Min Jo, Nam-Sun Son, "Detection and Tracking Methods of Maritime Obstacles Using Multiple Cameras", Proceedings of ICDM(International Conference on Decarbonization and Digitalization in Marine Engineering) 2022, Siheung, Korea, 2022.04.28-29


List of Articles
번호 분류 제목 Publication Date
35 International Conference Jin-Hyeok Kim, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, Min-Jae Oh, Sejin Oh, "Estimation Model of Hydrodynamic Performance Using Hull Form Variation and Deep Learning", Proceedings of PRADS 2022, Dubrovnik, Croatia, pp.??, 2022.10.09-13 2022-10-09
34 International Conference Min-Chul Kong, Myung-Il Roh, Jisang Ha, Eun Seok Jin, Donghun Yu, "Design of the Integrated System for the Safe Operation Based on Augmented Reality", Proceedings of PRADS 2022, Dubrovnik, Croatia, 2022.10.09-13 2022-10-12
33 Domestic Conference 조영민, 노명일, 이혜원, 진은석, 유동훈, "가상의 센서 데이터 융합을 이용한 해상 장애물의 추적 방법", 2022년도 한국CDE학회 동계학술발표회, 제주, 2022.02.09-12 file 2022-02-11
32 Domestic Conference 김기수, 노명일, 송하민, 정동근, "차세대 스마트 함정을 위한 승조원 운영 최적화 방법", 2021년도 함정기술무기체계 세미나, 부산, 2021.06.10-11 2021-06-11
31 International Conference Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Seung-Ho Ham, "A Method for Automatic Control of Cranes for Block Lifting in Shipyard", Proceedings of PRADS 2022, Dubrovnik, Croatia, pp. 64, 2022.10.09-13 file 2022-10-09
30 International Conference Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, "Deep Reinforcement Learning-Based Ship Collision Avoidance Considering Collision Risk", Proceedings of TEAM 2022, Istanbul, Turkey, pp. 268, 2021.12.06-07 file 2021-12-07
29 Domestic Conference 박정호, 노명일, 이혜원, 하지상, 조영민, 손남선, "다중 선박으로부터의 카메라 영상 기반 단일 해상 장애물의 탐지 및 추적 방법", 2022년도 한국CDE학회 동계학술발표회, 제주, 2022.02.09-12 file 2022-02-10
» International Conference Jeong-Ho Park, Myung-Il Roh, Hye-Won Lee, Jisang Ha, Yeong-Min Jo, Nam-Sun Son, "Detection and Tracking Methods of Maritime Obstacles Using Multiple Cameras", Proceedings of ICDM 2022, Siheung, Korea, 2022.04.28-29 2022-04-28
27 Domestic Conference 여인창, 노명일, 전도현, "선박 배관망 지지대의 최적 배치 설계", 2022년도 한국CDE학회 동계학술발표회, 제주, 2022.02.09-12 file 2022-02-10
26 Domestic Conference 전도현, 노명일, 이혜원, 함승호, "블록의 특성을 고려한 크레인의 와이어 제어 방법", 2022년도 한국CDE학회 동계학술발표회, 제주, 2022.02.09-12 file 2022-02-11
Board Pagination Prev 1 ... 37 38 39 40 41 42 43 44 45 46 Next
/ 46

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소