Skip to content
Extra Form
Abstract For safe operation, a navigator needs to accurately recognize the circumstance around the ship and constantly focus on objects that require attention. Therefore, the navigator should properly utilize the information of the field of vision seen from the ship and the sensor data such as AIS (Automatic Identification System), RADAR (RAdio Detection And Ranging), etc. However, since such data have different dimensions and meanings, it is not easy to interpret except for professionals, and it is not intuitive. In addition, it is difficult to obtain consistent and high-accuracy data depending on the characteristics of each sensor (detection distance, detection period, error, blind spot, etc.) and whether other ships are equipped with the AIS system. Therefore, we developed an integrated navigation assistance system that can effectively report sensor data to the navigator by sensor data fusion. We tracked the positions of ships by sensor data fusion through the tracking filter. To supplement the limitations of sensors, we used the object detection model. Collision risk was quantitatively calculated using the detected ships and tracking data, and the collision-free path of the own ship was generated. The above processes were modularized and integrated, and communication packets were defined to enable data exchange between each module. Finally, we implement a navigation assistance system that efficiently provides necessary information for navigating using AR (Augmented Reality) technology. In addition to ship detection and tracking data, the ship needs to visualize its own sensor data, such as rudder angle and engine RPM. Various data was provided as an intuitive UI by appropriately overlapping the information within the image. The integrated navigation assistance system was mounted on a test ship in actual operation, and its effectiveness was confirmed by transmitting necessary information to the land command center.
Publication Date 2022-11-09
Min-Chul Kong, Myung-Il Roh, Jisang Ha, Jeong-Ho Park, EunSeok Jin, Donghun Yu, "Integrated Navigation Assistance System Using Augmented Reality", Proceedings of G-NAOE 2022, Changwon, Korea, 2022.11.06-10

List of Articles
번호 분류 제목 Publication Date
468 International Conference Min-Chul Kong, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, Jeongyoul Lee, Jongoh Kim, Gapheon Lee, "A Detection Method of Objects with Text in Drawings Based on Deep Learning", Proceedings of ISOPE 2023, Ottawa, Canada, 2023.06.19-23 2023-06-19
467 Domestic Conference 노명일, "자율운항선박을 위한 핵심 AI 기술", 2023년도 스마트전기선박연구회 동계학술발표회, 대전, 2023.02.23-24 file 2023-02-23
466 Domestic Conference 김동우, 노명일, 전도현, 우선홍, 이혜원, 김용태, "딥 러닝을 이용한 멤브레인 타입 LNG선 화물창의 1차 방벽의 형상 최적화 방법 ", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-10
465 Domestic Conference 공민철, 노명일, 이혜원, 전도현, 조영민, 박정호, "자율 운항 기술 검증을 위한 VR 기반 시뮬레이션 프로그램", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-09
464 Domestic Conference 여인창, 노명일, 이혜원, 유동훈, "선박용 서라운드 뷰 영상의 자동 생성 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-09
463 Domestic Conference 하지상, 노명일, 공민철, 김기수, "격벽, 장비 및 배관을 고려한 선박의 배치 설계 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-09
462 Domestic Conference 조영민, 노명일, 이혜원, 공민철, "자율 운항 선박을 위한 개선된 센서 융합 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-09
461 Domestic Conference 김하연, 노명일, 이혜원, 조영민, "센서 데이터를 이용한 선박의 추적 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-09
460 Domestic Conference 전도현, 노명일, 이혜원, 유동훈, "연안 적용을 위한 충돌 위험도 산정 및 충돌 회피 경로 생성 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-09
459 Domestic Conference 김진혁, 노명일, 여인창, "설계 요구 조건을 고려한 국부 변형 기반 상선의 선형 변환 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-09
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 47 Next
/ 47

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소