Skip to content
Extra Form
Abstract 선박의 소요 마력을 최소로 하는 경제 항로를 결정하기 위해 해기상 예측과 그에 따른 소요 마력 예측이 필요하다. 일반적으로 European Centre for Medium-Range Weather Forecast (ECMWF), Hybrid Coordinate Ocean Model (HYCOM) 등 기상 정보 업체로부터 해기상 정보를 확보할 수 있다. 하지만 일반적인 기상 정보 업체는 6주 정도의 단기 예측을 하기 때문에 장기 예측이 필요할 때는 해기상 정보를 자체적으로 예측해야 한다. 기존의 연구에서는 주로 특정 해역에서 파고, 파 주기, 파향 등 한정적인 해기상 정보에 대한 예측만 이루어져 전 해상 영역에 대한 해기상 정보 예측에는 한계가 존재했다. 따라서 본 연구에서는 파고, 파 주기, 파향, 풍속, 풍향, 유속, 유향, 수온 등 8가지 해기상 정보를 전 해상 영역에 대해 예측하는 방법을 제안하였다. 한편, 소요 마력 추정의 경우, 기존에는 해석적 방법과 통계적인 방법을 조합해 추정하였다. 그래서 추정 결과가 실제 운항 데이터와는 많은 오차가 존재했다. 이러한 한계점을 극복하기 위해 본 연구에서는 실제 운항 데이터를 기반으로 한 소요 마력 추정 방법을 제안하였다. 특히, 본 연구에서는 해기상 및 소요 마력 예측 모델을 개발하기 위해 딥 러닝 기법을 적용했다. 전 해상 영역에 대한 해기상 예측을 위해 시계열 이미지를 예측하는데 적합한 Convolutional LSTM을 활용하였으며, 선박의 소요 마력을 예측하기 위해 DFN (Deep Feedforward Neural network)을 활용하였다. 또한, 예측 정확도의 향상을 위해 데이터의 전처리를 진행하였으며, AutoEncoder, hyperparameters optimization, K-means clustering 등의 기법을 추가로 적용하였다. 제안된 방법의 효용성을 평가하기 위해 실제 값과 개발된 모델로 예측된 결과를 비교하여 검증하였으며, 그 결과 본 연구에서 제안한 방법의 효용성을 확인하였다.
Keywords: Ocean environmental data, Ship;s required power, DFN (Deep Feedforward Neural network), Convolutional LSTM (Long Short-Term Memory), AutoEncoder
Publication Date 2020-11-06

이준범, 노명일, 김기수, 한기민, 이갑헌, "딥 러닝을 이용한 해기상 및 소요 마력 예측 모델 개발", 2020년도 대한조선학회 추계학술발표회, 창원, pp. 453-454, 2020.11.05-06


  1. No Image 25Mar
    by
    in Domestic Conference

    이종혁, 노명일, 김기수, 이혜원, "선박 및 해양 구조물의 자동 접이안 시뮬레이션 방법", 2021년도 한국해양과학기술협의회 공동학술대회, 인천, pp. 562, 2021.05.13-14

  2. No Image 25Mar
    by
    in Domestic Conference

    여인창, 노명일, 김진혁, 김기수, "선형 성능의 정성적 평가를 위한 딥 러닝 기반 이미지 시각화 방법", 2021년도 한국해양과학기술협의회 공동학술대회, 인천, pp. 573, 2021.05.13-14

  3. No Image 04Mar
    by
    in Invited Seminar

    노명일, "선박 설계, 생산 및 운용 단계에서의 딥 러닝 활용 예, 2020년도 선박해양플랜트구조연구회 워크샵, 2021.02.18

  4. No Image 04Mar
    by
    in Domestic Conference

    김진혁, 노명일, 김기수, 여인창, "딥 러닝을 이용한 선형 성능의 우열 관계 예측", 2021년도 한국해양과학기술협의회 공동학술대회, 인천, pp. 572, 2021.05.13-14

  5. No Image 17Nov
    by
    in Domestic Conference

    김기수, 김종웅, 노명일, "대기 행렬과 DEVS 기반 함정의 승조원 운영 최적화 방법", 2020년도 한국CDE학회 동계학술발표회, 제주, pp.311, 2020.11.25-28

  6. No Image 27Oct
    by
    in Domestic Conference

    김기수, 김종웅, 노명일, "함정의 승조원 운영 평가 및 최적화 방법", 2020년도 대한조선학회 추계학술발표회, 창원, pp. 257, 2020.11.05-06

  7. No Image 20Oct
    by
    in Domestic Conference

    이원재, 노명일, 하지상, 이혜원, 공민철, 조영민, 손남선, "선박 주변 인지를 위한 영상 기반 장애물 탐지 및 추적 방법", 2020년도 대한조선학회 추계학술발표회, 창원, pp. 241-242, 2020.11.05-06

  8. No Image 20Oct
    by SyDLab
    in Domestic Conference

    이준범, 노명일, 김기수, 한기민, 이갑헌, "딥 러닝을 이용한 해기상 및 소요 마력 예측 모델 개발", 2020년도 대한조선학회 추계학술발표회, 창원, pp. 453-454, 2020.11.05-06

  9. No Image 20Oct
    by
    in Domestic Conference

    하지상, 노명일, 김기수, "전문가 시스템과 최적화 기법 기반 배관 라우팅 방법", 2020년도 대한조선학회 추계학술발표회, 창원, pp. 402, 2020.11.05-06

  10. No Image 20Oct
    by
    in Domestic Conference

    전도현, 노명일, 이혜원, "딥 러닝 기반 크레인 와이어 제어를 통한 리프팅 블록의 거동 최소화", 2020년도 대한조선학회 추계학술발표회, 창원, pp. 359, 2020.11.05-06

Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 42 Next
/ 42

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소