Skip to content
Extra Form
Abstract Drawings such as piping and instrument diagrams (P&ID) or ship safety plans have various equipment and components (lines, signs, and text). Every drawing has rules to express these objects with specific symbols. Generally, these drawings are very complex because they are large in size and consist of relationships between several objects. Therefore, the drawing investigators spend countless time and labor.
For the above reasons, this study uses a deep learning model that has been actively researched recently. An object detection model based on deep learning can quickly find various objects within the drawing. However, the drawing differs from the common images in size and characteristics, generally used as an input in deep learning. Therefore, we proposed a series of procedures for applying the deep learning model to the drawing. This study proposed an object detection algorithm specialized for drawings by combining the non-maximum suppression (NMS) algorithm with the sliding window algorithm. YOLOv7 was selected as an object detection model, which showed the best accuracy by comparing various deep learning models. First, we made a detection window that slides on the drawing. Then, the NMS algorithm was applied to remove duplicate objects from the overall detection results.
Training a deep learning model requires a large amount of training data, but it takes a lot of time to label drawings manually. Therefore, we proposed a data generation model for training data. Objects and background images were extracted from several drawings, and training data were generated by randomly mixing them as material and base. The optimal parameters for training data were selected by comparing the accuracy of the drawings. All models used in this study were trained only with the generated virtual training data.
Knowing how many objects are placed in each division of the ship is important in the inspecting process. Therefore, we developed an algorithm that automatically recognizes the division of the ship and organizes the types and numbers of equipment placed in each division. Furthermore, we developed an algorithm that can obtain the connection relationship between objects and detailed specification of objects by recognizing lines and texts connected to each object.
The method proposed in this study was applied to several actual plans. We confirmed the effectiveness of the proposed method by obtaining high average accuracy. By applying the proposed method, the review procedure, which took several days, can be reduced dramatically to a few minutes per drawing.
Publication Date 2023-06-22
Min-Chul Kong, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, Jeongyoul Lee, Jongoh Kim, Gapheon Lee, "A Detection Method of Objects with Text in Drawings Based on Deep Learning", Proceedings of ISOPE 2023, Ottawa, Canada, 2023.06.19-23

List of Articles
번호 분류 제목 Publication Date
481 Domestic Conference 공민철, 노명일, 하지상, 김미진, 김정연, "GNN 기반 P&ID의 패턴 인식 및 분석 방법", 2023년도 대한조선학회 추계학술대회, 울산, pp. ??, 2023.11.02-03 2023-11-02
480 International Conference Min-Chul Kong, Myung-Il Roh, Jisang Ha, Mijin Kim, Jeoungyoun Kim, "A Method for the Generation of Optimal Patterns for Equipment Unit Modules in the Engine Room", Proceedings of 10th PAAMES and AMEC 2023, Kyoto, Japan, 2023.10.18-20 2023-10-19
479 Domestic Conference 여인창, 노명일, 공민철, 민동기, 정동근, "선박의 Safety Plan 검토를 위한 자동 데이터 생성과 딥 러닝 기반 객체 검출", 2023년도 한국CDE학회 하계학술대회, 제주, pp. ??, 2023.08.23-26 2023-08-25
478 Domestic Conference 한인수, 노명일, 공민철, "딥 러닝을 활용한 P&ID 내 장비 인식 방법", 2023년도 한국CDE학회 하계학술대회, 제주, pp. ??, 2023.08.23-26 2023-08-25
477 Domestic Conference 김하연, 노명일, 하지상, 조영민, 이혜원, "센서 데이터를 활용한 딥 러닝 기반 해상 장애물의 추적 방법", 2023년도 한국CDE학회 하계학술대회, 제주, pp. ??, 2023.08.23-26 2023-08-24
» International Conference Min-Chul Kong, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, Jeongyoul Lee, Jongoh Kim, Gapheon Lee, "A Detection Method of Objects with Text in Drawings Based on Deep Learning", Proceedings of ISOPE 2023, Ottawa, Canada, 2023.06.19-23 file 2023-06-22
475 Domestic Conference 전도현, 노명일, 이혜원, 유동훈, 진은석 "입력 데이터의 불확실성과 복잡한 조우 상황을 고려한 충돌 위험도 평가 방법", 2023년도 대한조선학회 춘계학술발표회, 부산, pp. 442, 2023.05.02-04 file 2023-05-04
474 Domestic Conference 김진혁, 노명일, 여인창, "설계 요구 조건을 고려한 MLP 기반 상선의 선형 변환 방법", 2023년도 대한조선학회 춘계학술발표회, 부산, pp. 309-310, 2023.05.02-04 file 2023-05-04
473 Domestic Conference 여인창, 노명일, 공민철, 전도현, 하지상, 유동훈, 진은석, "선박의 자동 접이안을 위한 서라운드 뷰 생성 방법", 2023년도 대한조선학회 춘계학술발표회, 부산, pp.315-316, 2023.05.02-04 file 2023-05-04
472 Domestic Conference 공민철, 노명일, 한인수, 김미진, 김정연, "P&ID 내 객체 및 문자 인식 방법", 2023년도 대한조선학회 춘계학술발표회, 부산, pp. 313-314, 2023.05.02-04 file 2023-05-04
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 49 Next
/ 49

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소