Sung-Jun Lee, Myung-Il Roh, Min-Jae Oh, Youngsoo Seok, Won-Jae Lee, June-Beom Lee, Hyun Soo Kim, "Image-based Object Detection and Tracking Method for Ship Navigation," Proceedings of ICCAS(International Conference on Computer Applications in Shipbuilding) 2019, Rotterdam, Netherlands, pp. 89-92, 2019.09.24-26
International Conference
2019.05.23 06:12
Sung-Jun Lee, Myung-Il Roh, Min-Jae Oh, Youngsoo Seok, Won-Jae Lee, June-Beom Lee, Hyun Soo Kim, "Image-based Object Detection and Tracking Method for Ship Navigation," Proceedings of ICCAS 2019, Rotterdam, Netherlands, pp. 89-92, 2019.09.24-26
조회 수 14296
첨부 '1' |
---|
Abstract | Situational awareness is one of the most essential abilities of unmanned vessels. Even in the case of manned vessels, situational awareness can contribute to safe navigation by detecting and alerting potential collisions. Although radar and AIS(Automatic Identification System) are widely used for detection, it is necessary to use vision cameras that can take place of human eyes to detect near objects and identify object types. In this study, we performed machine vision based object detection and tracking for the situational awareness in maritime environment. For object detection, the state-of-the-art detection algorithms and their various backbone CNN(Convolutional Neural Network) models were applied; a two-stage detection model derived from Faster R-CNN and a single-stage detection model based on YOLO were implemented and tested in this study. The performance in mAP(mean average precision) score of each detection model was evaluated and compared. For object tracking, we surveyed not only conventional correlation filtering algorithms but also deep learning algorithms using LSTM(Long Short-Term Memory) network models. All the trainable detection and tracking models were trained by maritime domain image dataset. Performance of each model was estimated under maritime visionary environment. |
---|---|
Publication Date | 2019-09-24 |
-
이준범, 노명일, 김기수, 한기민, 이갑헌, "딥 러닝 기반 해기상 및 선박 소요 마력 예측", 2020년도 한국CDE학회 동계학술발표회, 평창, pp. 343, 2020.02.05-08
CategoryDomestic Conference -
이원재, 노명일, 이성준, 하지상, 공민철, 이종혁, "선박의 주변 인지를 위한 영상 인식 기반 물체 탐지 및 추적 방법", 2020년도 한국CDE학회 동계학술발표회, 평창, pp. 341, 2020.02.05-08
CategoryDomestic Conference -
이종혁, 노명일, 이원재, 공민철, 하지상, "해상 물체 탐지를 위한 가상 이미지 데이터셋 생성", 2020년도 한국CDE학회 동계학술발표회, 평창, pp. 340, 2020.02.05-08
CategoryDomestic Conference -
하지상, 노명일, 이종혁, 김진혁, 공민철, 함승호, "디지털 트윈을 이용한 선박 원격 운항 시스템", 2020년도 한국CDE학회 동계학술발표회, 평창, pp. 342, 2020.02.05-08
CategoryDomestic Conference -
이혜원, 노명일, 함승호, "조선소의 블록 탑재 자동화를 위한 시뮬레이션 고도화 및 크레인 제어", 2020년도 한국CDE학회 동계학술발표회, 평창, pp. 338, 2020.02.05-08
CategoryDomestic Conference -
전도현, 노명일, 이혜원, 함승호, "심층 강화 학습 기반의 와이어 로프 제어를 통한 블록의 움직임 최소화", 2020년도 한국CDE학회 동계학술발표회, 평창, pp. 339, 2020.02.05-08
CategoryDomestic Conference -
김진혁, 노명일, 김기수, 공민철, "증강 현실 기술을 이용한 장비의 원격 유지 보수", 2020년도 한국CDE학회 동계학술발표회, 평창, pp. 361, 2020.02.05-08
CategoryDomestic Conference -
하지상, 노명일, 이혜원, 은종호, 박종진, "실시간 AIS 데이터를 이용한 해상 충돌 회피 알고리즘 연구", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 430, 2019.10.24-26
CategoryDomestic Conference -
이준범, 노명일, 김기수, 김상엽, 한기민, 김대현, "딥 러닝 기법을 이용한 선박의 소요 마력 예측", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 523, 2019.10.24-26
CategoryDomestic Conference -
오민재, 노명일, 김범수, 김용환, "선박의 운항 효율을 고려한 선형 변환 방법", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 480, 2019.10.24-2019.10.25
CategoryDomestic Conference