Skip to content
Extra Form
Abstract 자율 운항 선박에 있어서 선박 주변의 물체를 정확하고 신속하게 탐지하는 것은 중요한 기술이다. 또한 현재의 유인 운항 선박에서도 사람의 실수를 방지하기 위한 운항 보조 시스템으로서의 물체 탐지 기술이 필요하다. 본 연구에서는 광학 카메라를 통해 촬영된 해양 환경 영상을 대상으로 물체 탐지를 수행하였으며, SNIP(Scale Normalization for Image Pyramid) 방법을 이용하여 물체 탐지 정확도를 개선하고자 하였다. 본 연구에서는 물체 탐지 방법으로서 최근 컴퓨터 비전 분야에서 널리 활용되고 있는 CNN(Convolutional Neural Network)을 기반으로 한 딥 러닝 물체 탐지 방법인 Faster R-CNN을 활용하였다. Faster R-CNN의 경우 two-stage 물체 탐지 방법으로서 물체 탐지를 수행하는데 소요되는 시간이 one-stage 방법에 비해 길다는 단점이 있으나 비교적 물체 탐지 정확도가 높아 조선 해양 분야에 적합하다. 해양 환경 영상으로는 공개되어 있는 Singapore Maritime Dataset을 이용하여 물체 탐지 모델을 학습시켰고, 학습된 모델의 정확도를 확인하였다. 해양 환경 영상에서는 수많은 작은 물체가 존재하기 때문에 이들을 적절히 탐지하는 것은 중요하다. Faster R-CNN을 비롯한 기존의 물체 탐지 방법들의 경우 작은 물체를 탐지하는 정확도가 낮다는 단점이 있으나 이를 극복하기 위하여 Faster R-CNN 알고리즘에 SNIP 방법을 적용하였다. SNIP 방법에서는 작은 물체에 대해서는 스케일을 키우고 큰 물체에 대해서는 스케일을 작게 하여 물체 스케일 간의 편차를 줄인 다음 학습시켜 정확도를 향상시킨다. 결과적으로 작은 크기의 물체를 탐지하는 성능과 전체적인 물체 탐지 성능이 향상된 것을 확인하였다.
Keywords: Object detection (물체 탐지), Object recognition (장애물 인식), CNN (Convolutional Neural Network), Faster R-CNN, 딥 러닝( Deep learning), 스케일 정규화 (SNIP: Scale Normalization for Image Pyramid)
Publication Date 2019-05-17

이원재, 노명일, 이성준, 석영수, 오민재, "스케일 정규화를 통한 딥러닝 기반의 선박 이미지 인식 정확도 향상 방법 연구", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 340, 2019.05.15-17


List of Articles
번호 분류 제목 Publication Date
183 Domestic Conference 이상현, 노명일, 김기수, "최적화 기법과 전문가 시스템 기반 LNG FPSO의 통합 배치 설계 방법", 2017년도 한국해양공학회 추계학술발표회, 거제, 2017.10.19-20 file 2017-10-20
182 Domestic Conference 이성, 구남국, 하솔, 노명일, 황호진, "해상 풍력 발전기의 주파수 영역에서의 거동 해석", 2014년도 한국CAD/CAM학회 동계학술발표회, pp. 897-910, 평창, 2014.02.12-14 file 2014-02-12
181 Domestic Conference 이성, 노명일, 함승호, 김기수, 조로만, 정동훈, "HLA를 기반으로 한 해석-가시화 통합 방법 연구 및 조선 해양 협업 시뮬레이션에의 적용", 2015년도 대한조선학회 추계학술발표회, 거제, pp. 453-456, 2015.11.05-06 file 2015-11-05
180 Domestic Conference 이성, 함승호, 조로만, 하솔, 노명일, "조선소 생산 작업 지원을 위한 VR 기반 협업 시뮬레이션에 관한 연구", 2015년도 한국CAD/CAM학회 동계학술발표회, 평창, pp. 282-286, 2015.02.04-06 file 2015-02-05
179 Domestic Conference 이성민, 노명일, 김기수, "선박 최적 항로 결정을 위한 목적 함수 및 제약 조건 선정에 관한 연구", 2017년도 한국CDE학회 동계학술발표회, 평창, pp. 455, 2017.02.08-10 file 2017-02-09
178 Domestic Conference 이성민, 노명일, 김기수, "선박 항로 계획을 위한 최적 경로 및 속도 결정 방법에 관한 연구", 2017년도 대한조선학회 춘계학술발표회, 부산, pp. 29-30, 2017.04.19-20 file 2017-04-19
177 Domestic Conference 이성민, 노명일, 김기수, 함승호, "최적화 기법을 이용한 블록의 러그 배치 설계 방법", 2016년도 대한조선학회 춘계학술발표회, 부산, pp. 417, 2016.05.19-20 file 2016-05-20
176 Domestic Conference 이성민, 노명일, 김기수, 함승호, 김주성, 하솔, "최적화 기법과 역학 기반의 블록 러그 배치 방법에 대한 연구", 2016년도 한국CAD/CAM학회 동계학술발표회, 평창, pp. 154-157, 2016.01.27-29 file 2016-01-27
175 Domestic Conference 이성준, 노명일, 김신형, "딥러닝을 이용한 이미지 기반 해양 장애물 탐지 및 분류", 2018년도 해양플랜트설계연구회 하계연구발표회, 서울, 2018.05.31-06.01 file 2018-05-31
174 Domestic Conference 이성준, 노명일, 석영수, 이원재, 오민재, 김현수, "멀티스케일 및 다단계 탐지 방법을 활용한 고성능 선박 이미지 인식 방법", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 333, 2019.05.15-17 file 2019-05-16
Board Pagination Prev 1 ... 11 12 13 14 15 16 17 18 19 20 ... 34 Next
/ 34

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소