Skip to content
Extra Form
Abstract 선박이나 해양플랜트는 여러 개의 블록을 조립 및 탑재하여 건조되기 때문에, 각 블록의 설계 및 조립 일정은 선박 건조의 일정에 큰 영향을 미치는 요소이다. 따라서, 선박의 건조 일정을 예측하기 위해 블록의 설계 진행율에 영향을 주는 요소들에 대한 분석을 통해 각 블록 별 설계 기한 대비 현재 진행율을 확인할 필요가 있다. 하지만, 각 블록의 설계는 각종 3D CAD 프로그램 등을 이용하여 진행되며 각 블록의 설계 시점, 설계자 별 모델링 되는 부품의 수가 일정하지 않을 뿐만 아니라 매일 저장되는 CAD 프로그램의 로그 및 최종 모델링 데이터의 용량이 매우 방대하기 때문에 설계 진행율을 예측하는 데에 어려움이 있다. 본 연구에서는 이러한 대용량 데이터에 대한 분석을 수행하기 위해 빅데이터 (Big Data) 기법을 통해 블록의 설계 진행율을 예측하였다. 이를 위해, 블록의 설계 완성도를 1~10 단계로 나누어 블록에 사용된 총 부품의 개수, 난이도, 완성된 부품 비율, 완성된 부품의 증가량 등 블록의 설계 진행율에 영향을 주는 다양한 설계 변수를 통해 현재의 설계 완성도를 예측하였다. 이 과정에서, 다양한 방법을 통해 설계 진행율을 분석하여 설계 진행율의 정확도를 높이기 위하여 기계 학습 (Machine Learning) 중 지도 학습 (Supervised Learning)의 한 방법인 의사 결정 나무 (Decision Tree) 방법과 최근 회귀 분석 (Regression Analysis) 및 분류 (Classification) 분야에서 각광받고 있는 딥 러닝 (Deep Learning) 기법을 통해 블록의 설계 진행율 분석을 수행하였다. 500개의 블록에 대한 데이터를 350개의 learning set과 150개의 validation set으로 나누어 각 방법을 통해 설계 진행율을 분석한 결과, 의사 결정 나무 및 딥 러닝 양방법 모두 비슷한 정확도로 설계 진행율을 정확하게 예측하는 것을 확인하였다.
Publication Date 2019-05-17

전도현, 노명일, 오민재, 박성우, 이준범, "빅데이터 및 딥 러닝 기술을 이용한 블록의 설계 진행율 분석", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 332, 2019.05.15-17


  1. No Image 06Aug
    by
    in Domestic Conference

    전도현, 노명일, 이혜원, 하지상, "선박 충돌 회피 문제에 대한 강화 학습의 효용성", 2020년도 대한조선학회 춘계학술발표회, 부산, pp. 167, 2020.07.22-23

  2. No Image 28Dec
    by
    in Domestic Conference

    전도현, 노명일, 이혜원, 조영민, 진은석, 유동훈 "선박 정보의 불확실성을 고려한 확률론적 충돌 위험도 산정", 2021년도 한국CDE학회 하계학술발표회, 제주, pp. 94, 2021.08.25-28

  3. No Image 26Apr
    by
    in Domestic Conference

    전도현, 노명일, 이혜원, 유동훈, 진은석 "입력 데이터의 불확실성과 복잡한 조우 상황을 고려한 충돌 위험도 평가 방법", 2023년도 대한조선학회 춘계학술발표회, 부산, pp. 442, 2023.05.02-04

  4. No Image 13Feb
    by
    in Domestic Conference

    전도현, 노명일, 이혜원, 유동훈, "연안 적용을 위한 충돌 위험도 산정 및 충돌 회피 경로 생성 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, p. 49, 2023.02.08-11

  5. No Image 03Sep
    by
    in Domestic Conference

    전도현, 노명일, 이혜원, "블록의 형상과 무게 중심을 고려한 갠트리 크레인의 리프팅 자동화 방법", 2021년도 대한조선학회 추계학술발표회, 군산, pp. 589, 2021.11.04-05

  6. No Image 20Oct
    by
    in Domestic Conference

    전도현, 노명일, 이혜원, "딥 러닝 기반 크레인 와이어 제어를 통한 리프팅 블록의 거동 최소화", 2020년도 대한조선학회 추계학술발표회, 창원, pp. 359, 2020.11.05-06

  7. No Image 02Apr
    by SyDLab
    in Domestic Conference

    전도현, 노명일, 오민재, 박성우, 이준범, "빅데이터 및 딥 러닝 기술을 이용한 블록의 설계 진행율 분석", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 332, 2019.05.15-17

  8. No Image 29Mar
    by
    in Domestic Conference

    전도현, 노명일, 여인창, "LNG선 멤브레인 탱크의 최적 설계 방법", 2022년도 대한조선학회 춘계학술발표회, 제주, pp. 411, 2022.06.02-04

  9. No Image 04Dec
    by
    in Domestic Conference

    장경식, 이보현, 윤범상, 이주성, 노명일, "변분 다중 스케일법을 이용한 Ret = 180 채널 난류 유동의 대와류 모사", 2009년도 한국전산유체공학회 추계학술발표회, 대전, pp. 56-59, 2009.11.27-28

  10. No Image 04Dec
    by
    in Domestic Conference

    장경식, 윤범상, 이주성, 노명일, "변분 다중 스케일법을 이용한 후향 계단 유동의 대와류 모사", 2010년도 한국유체공학학술대회, 부산, pp. 311-313, 2010.08.18-20

Board Pagination Prev 1 ... 5 6 7 8 9 10 11 12 13 14 ... 31 Next
/ 31

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소