Skip to content
Extra Form
Abstract Social interest in autonomous navigation systems for autonomous ships is also increasing. For a robust autonomous navigation system, the location, speed, and direction of the ship and other ships must be identified in real time, and collision avoidance should be performed at an appropriate time by considering the collision risk. In this study, we proposed a collision avoidance method that quantitatively assesses the collision risk and then generates an avoidance path. First, to assess the collision risk, a collision risk assessment method based on the ship domain and the closest point of approach (CPA) was proposed. The ship domain is created with an asymmetric shape considering manoeuvring performance and the COLREGs. The CPA is used to assess quantitative collision risk value. Subsequently, a path generation algorithm based on deep reinforcement learning (DRL) was proposed to determine the avoidance time and to generate an avoidance path complying the COLREGs for the most dangerous ship in terms of collision risk. The information of own ship and target ship such as location, speed, heading, collision risk is used as the input state, and the rudder angle of own ship is set as the output action of the DRL. The cost function related to the path following and the collision avoidance is defined as the reward of the DRL-based collision avoidance method. Additionally, the DRL modes are defined to navigate the flexible avoidance path by changing the ratio between the path following and the collision avoidance. To verify the proposed method, we compared the collision avoidance method with the A* algorithm, which is a traditional path planning algorithm, and analyzed the results for various scenarios. The proposed method reliably avoided collisions through flexible paths for complex and unexpected changes in situations compared to the A* algorithm.
Publication Date 2021-08-15
Role Corresponding Author
Category SCI

Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Jisang Ha, Donghun Yu, “Deep Reinforcement Learning-based Collision Avoidance for an Autonomous Ship”, Ocean Engineering, Vol. 234, pp. 1-20, 2021.08.15

List of Articles
번호 분류 제목 Publication Date
6 International Journal Hye-Won Lee, Myung-Il Roh, Ki-Su Kim, “Ship Route Planning in Arctic Ocean Based on POLARIS”, Ocean Engineering, Vol. 234, pp. 109297.1-14, 2021.08.15 file 2021-08-15
5 International Journal Hye-Won Lee, Joo-Hyun Woo, Myung-Il Roh, Seung-Ho Ham, et al., "Integrated Simulation of Virtual Prototypes and Control Algorithms of Unmanned Surface Vehicles Based on a Robot Operating System", Journal of Marine Science and Technology (Taiwan) file 2021-09-03
4 International Journal Won-Jae Lee, Myung-Il Roh, Hye-Won Lee, Jisang Ha, Yeong-Min Cho, Nam-Sun Son, “Detection and Tracking for the Awareness of Surroundings of a Ship Based on Deep Learning”, Journal of Computational Design and Engineering, Vo. 8, No. 5 file 2021-10-01
3 International Journal Ki-Su Kim, Myung-Il Roh, Seung-Min Lee, "Quasi-static Flooding Analysis Method of a Damaged Ship Considering Oil Spill and Cargo Load", Journal of Ship Production and Design, 2022.02.10 file 2022-02-10
2 International Journal Min-Chul Kong, Myung-Il Roh, Ki-Su Kim, Jeongyoul Lee, Jongoh Kim, Gapheon Lee, "Object Detection Method for Ship Safety Plans Using Deep Learning", Ocean Engineering, 2022.02.15 file 2022-02-15
1 International Journal Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, "Automation of Crane Control for Block Lifting Based on Deep Reinforcement Learning", accepted for publication in Journal of Computational Design and Engineering, 2022.07.11 2022-07-11
Board Pagination Prev 1 2 3 4 5 6 Next
/ 6

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내

이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소