Skip to content
Extra Form
Abstract This study investigates the optimization of the hull form of a tanker, considering the operational efficiency in waves, in accordance with the recent Energy Efficiency Design Index regulation. For this purpose, the total resistance and speed loss of the ship under representative sea conditions were minimized simultaneously. The total resistance was divided into three components: calm water resistance, added resistance due to wind, and to waves. The first two components were calculated using regression formulas, and the last component was estimated using the strip theory, far-field method, and the short-wave correction formula. Next, prismatic coefficient, waterline length, waterplane area, and flare angle were selected as design variables from the perspective of operational efficiency. The hull form was described as a combination of cross-sectional curves. A combination of the method shifting these sections in the longitudinal direction and the Free-Form Deformation method was used to deform the hull. As a result of applying the non-dominated sorting genetic algorithm to a tanker, the hull was deformed thinner and longer, and it was determined that the total resistance and speed loss were reduced by 3.58 and 10.2%, respectively. In particular, the added resistance due to waves decreased significantly compared to the calm water resistance, which implies that the present tendency differs from conventional ship design that optimizes only the calm water resistance.
Publication Date 2021-05-19
Role Coauthor
Category SCIE
Impact Factor 2.753

Beom-Soo Kim, Min-Jae Oh, Jae-Hoon Lee, Yonghwan Kim, Myung-Il Roh, "Study on Hull Optimization Process Considering Operational Efficiency in Waves", Processes, Vol. 9, No. 5, pp. 898.1-21, 2021.05.19


  1. Dong-Hoon Jeong, Myung-Il Roh, Seung-Ho Ham, Chan-Young Lee, “Performance Analyses of Naval Ships Based on Engineering Level of Simulation at the Initial Design Stage”, IJNAOE, Vol. 9, No. 4, pp. 446-459, 2017.07.01

    CategoryInternational Journal
    Read More
  2. Dong-Hoon Jeong, Myung-Il Roh, Seung-Ho Ham, "Lifting Simulation of an Offshore Supply Vessel Considering Various Operating Conditions", Advances in Mechanical Engineering, Vol. 8, No. 6, pp. 1-13, 2016.06.16

    CategoryInternational Journal
    Read More
  3. Do-Hyun Chun, Myung-Il Roh, Seung-Ho Ham, “Optimum Arrangement Design of Mastic Ropes for Membrane-type LNG Tanks Considering the Flatness of Thermal Insulation Panel and Production Cost”, Journal of Marine Science and Engineering, Vol. 8, No. 5

    CategoryInternational Journal
    Read More
  4. Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Jisang Ha, Donghun Yu, “Deep Reinforcement Learning-based Collision Avoidance for an Autonomous Ship”, Ocean Engineering, Vol. 234, pp. 1-20, 2021.08.15

    CategoryInternational Journal
    Read More
  5. Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, "Automation of Crane Control for Block Lifting Based on Deep Reinforcement Learning", accepted for publication in Journal of Computational Design and Engineering, 2022.07.11

    CategoryInternational Journal
    Read More
  6. Beom-Soo Kim, Min-Jae Oh, Jae-Hoon Lee, Yonghwan Kim, Myung-Il Roh, "Study on Hull Optimization Process Considering Operational Efficiency in Waves", Processes, Vol. 9, No. 5, pp. 898.1-21, 2021.05.19

    CategoryInternational Journal
    Read More
Board Pagination Prev 1 2 3 4 5 6 Next
/ 6

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소