Skip to content
2017.02.24 13:54

Min-Jae Oh

?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄 첨부
Extra Form
E-mail mjoh80@snu.ac.kr
Career 1999.03~2003.02, B.S., Department of Naval Architecture and Ocean Engineering, Seoul National University, Korea
2003.03~2005.02, M.Sc., Department of Naval Architecture and Ocean Engineering, Seoul National University, Korea
2005.03~2011.08, Ph.D., Department of Naval Architecture and Ocean Engineering, Seoul National University, Korea
2011.09~2013.02, Post Doc., Department of Naval Architecture and Ocean Engineering, Seoul National University, Korea
2013.03~2016.11, Engineering Specialist, American Bureau of Shipping, Busan, Korea
2017.01~Now, Post Doc., Research Institute of Marine Systems Engineering, Seoul National University, Korea
Research Area Computer Aided Ship Design
Computer Aided Geometric Design
Software Quality Management
Publication * International Journal
12. Dmitry Berdinsky, Tae-wan Kim, Cesare Bracco, Durkbin Cho, Min-jae Oh, Yeong-hwa Seo, Sutipong Kiatpanichgij, "Iterative refinement of hierarchical T-meshes for bases of spline spaces with highest order smoothness", Computer-Aided Design (SCI), Vol. 47, pp. 96–107, 2014.
11. Dmitry Berdinsky, Tae-wan Kima, Cesare Bracco, Durkbin Cho, Bernard Mourrain, Min-jae Oh, Sutipong Kiatpanichgij, "Dimensions and bases of hierarchical tensor-product splines", Journal of Computational and Applied Mathematics (SCI), Vol. 257, pp. 86–104, 2014.
10. Cesare Bracco, Dmitry Berdinsky, Durkbin Cho, Min-­jae Oh, and Tae-wan Kim, “Trigonometric Generalized T-­splines”, Computer Methods in Applied Mechanics and Engineering (SCI), Vol. 268, No. 1, pp. 540–556, Jan. 2014.
9. Dmitry Berdinsky, Min‐jae Oh, Tae-­wan Kim, Bernard Mourrain, “On the problem of instability in the dimension of the splines space over T-­meshes”, Computer & Graphics (SCI), Vol. 36, No. 5, pp. 507-­513, 2012.
8. Min-­jae Oh, Kittichai Suthunaytanakit, Sung ha Park, and Tae-wan Kim, “Constructing G^1 Bezier Surfaces over a Boundary Curve Network with T-­junctions”, Computer-­Aided Design (SCI), Vol. 44, No. 7, pp. 671-­686, 2012.
7. Hyun-­deok Lee, Myeong-­jo Son, Min-­jae Oh, Hyung-woo Lee, and Tae-­wan Kim, “Development of a Simple Model for Batch and Boundary Information Updation for a Similar Ship’s Block Model”, SCIENCE CHINA (Information Science) (SCIE), Vol. 55, No. 5, pp. 1-­13, 2012.
6. Min-­jae Oh, Sang-­Moo Lee, Tae-­wan Kim, Kyu-­Yeul Lee, and Jongwon Kim, “Design of a Teaching Pendant Program for a Mobile Shipbuilding Welding Robot using a PDA”, Computer­‐Aided Design (SCI), Vol. 42, No. 3, pp. 173-­182, March 2010.
5. Lae­‐hyung Ryu, Tae-­wan Kim, Min-­jae Oh, Nam-­kug Ku, and Kyu-­‐yeol Lee, “Workspace Analysis to Generate a Collision-­Free Torch Path for a Ship Welding Robot”, Journal of Marine Science and Technology (SCIE), Vol. 14, No. 3, pp. 345-­‐358, Sep. 2009.
4. Zheng-Sheng Yu, Min-jae Oh, Zhi-Geng Pan, and Qun-Sheng Peng, “Generation of a planar offset curve based on minimum distance”, International Journal of Computer Aided Engineering and Technology, Vol. 1, No. 3, pp. 665-674, 2009.
3. Seok Hur, Min-jae Oh, and Tae-wan Kim, “Classification and resolution of critical cases in Grandine and Klein’s topology determination using perturbation method”, Computer Aided Geometric Design (SCI), vol. 26, No. 2, pp. 243-258, Feb. 2009.
2. Seok Hur, Min-jae Oh, and Tae-wan Kim, “Approximation of surface-to-surface intersection curves within a prescribed error bound satisfying G^2 continuity”, Computer-Aided Design (SCI), Vol. 41, No. 1, pp. 37-­46, January 2009.
1. Chen-sheng Yu, Yao-zhi Cai, Min-jae Oh, Tae-wan Kim, and Qun-sheng Peng, “An efficient method for tracing planar implicit curves”, Journal of Zhejiang University SCIENCE A (SCIE), Vol. 7, No. 7, pp. 1115-1123, 2006.

오민재-수정2.jpg


Board Pagination Prev 1 Next
/ 1

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소