Skip to content
Extra Form
Abstract The block erection using a gantry crane is an important process for the production of the ships in a shipyard. The motion of the block should be controlled accurately under the external forces to prevent collision with the structures and the excessive loads on wire ropes. However, it is difficult to control the block during the lifting because the movement of the block is indirectly controlled with various objects such as trolleys, hooks, equalizers, and wire ropes. Therefore, we proposed the Deep Reinforcement Learning (DRL)-based block lifting method in this study. The DRL-based block lifting method can control the block under the change of the center of gravity and modelling uncertainty. Furthermore, the DRL-based block lifting method can provide robust control with an unexpected motion of the block due to the unexpected external disturbance. The position, orientation and angular velocity of the block and hoisting speed of wire ropes were set as the input state of the neural network of DRL. The hosting speed of wire ropes was controlled as the output action of DRL. The functions to minimize the change of orientation and to stabilize the speed of the block were set as the reward of DRL. In this study, the deep deterministic policy gradient (DDPG) method of DRL, which is a kind of off-policy actor-critic method, was applied to solve the problem with continuous state space and continuous multi-action space. To verify the DRL-based block lifting method proposed in this study, it was compared with traditional control algorithms for various simulation examples. As a result, the proposed method could effectively control the block with the modelling uncertainty. Also, the proposed method could respond to the unexpected motion of the block effectively due to the unexpected external disturbance.
Publication Date 2022-04-28

Do-Hyun Chun, Myung-Il Roh, Hye-Won Lee, Seung-Ho Ham, "A Block Lifting Method with Wire Ropes Based on Deep Reinforcement Learning", Proceedings of ICDM(International Conference on Decarbonization and Digitalization in Marine Engineering) 2022, Si-Heung, Korea, 2022.04.28-29


List of Articles
번호 분류 제목 Publication Date
458 International Conference Myung-Il Roh, "Applications of Deep Learning in Ship Design, Production, and Operation Stages", Proceedings of ICDM(International Conference on Decarbonization and Digitalization in Marine Engineering) 2022, Siheung, Korea, 2022.04.28-29 2022-04-29
457 Domestic Conference 노명일, "선박 설계, 생산 및 운용 단계에서의 딥 러닝 활용 예, 2020년도 선박해양플랜트구조연구회 워크샵, 2021.02.18 2021-02-18
456 International Conference Myung-Il Roh, "Physics-based Simulation for Design, Production, and Installation of Ships and Offshore Structures", International Symposium on Computational Design and Engineering, Ho Chi Minh, Vietnam, 2017.12.13-16 2017-12-15
455 International Conference Myung-Il Roh, "Simulation Based Engineering for Ship and Offshore Plant", International Ocean Technology Conference & Expo (IOTCE 2015), Qingdao, China, 2015.09.01-03 file 2015-09-02
454 International Conference Ki-Su Kim, Myung-Il Roh, Seung-Ho Ham, Sol Ha, "Evacuation Analysis of Passenger Ships Considering Intermediate Flooding", Proceedings of International Symposium on PRADS 2022, Dubrovnik, Croatia, pp. 628-632, 2022.10.09-13 file 2022-10-10
453 Domestic Conference 전도현, 노명일, 이혜원, 조영민, 진은석, 유동훈 "선박 정보의 불확실성을 고려한 확률론적 충돌 위험도 산정", 2021년도 한국CDE학회 하계학술발표회, 제주, pp. 94, 2021.08.25-28 file 2021-08-26
452 Domestic Conference 송하민, 노명일, 하지상, 김기수, "해군 함정의 승조원 구성 시뮬레이션 방법", 2022년도 대한조선학회 추계학술발표회, 창원, 2022.11.09-11 2022-11-10
451 Domestic Conference 공민철, 노명일, 이혜원, 전도현, 조영민, 박정호, "자율 운항 기술 검증을 위한 VR 기반 시뮬레이션 프로그램", 2023년도 한국CDE학회 동계학술발표회, 평창, 2023.02.08-11 2023-02-09
450 Domestic Conference 박정호, 노명일, 이혜원, 조영민, 손남선, "딥 러닝 기반 다중 카메라 영상을 이용한 해상 장애물 탐지 추적에 관한 연구", 2022년도 한국항해항만학회 추계학술발표회, 부산, pp. 186, 2022.11.10 file 2022-11-10
449 Domestic Conference 정동근, 노명일, 여인창, 공민철, 김기수, 이준식, 유원철, "다양한 해상 객체를 반영한 소형 선박의 항로 계획법", 2022년도 대한조선학회 추계학술발표회, 창원, 2022.11.09-11 2022-11-11
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 47 Next
/ 47

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소