Skip to content
Extra Form
Abstract 해운사에서 경제 운항 경로를 선택하기 위해서는 해기상 데이터를 활용한 선박의 소요 마력 예측이 필요하다. 즉, 소요 마력 예측에는 수온, 파고, 풍속 등 해기상 데이터가 입력 값으로 활용되기에 해기상 데이터에 대한 예측이 선행되어야 한다. 다양한 예보 데이터의 활용이 가능하지만 데이터 송수신이 원활하지 않은 상황에서는 자체적인 해기상 데이터의 예측이 필요하다. 그러나 기존의 연구에서는 주로 파고, 파 주기 등 특정 해기상 데이터의 예측만 이뤄졌으며, 또한 특정 지역에 국한된 예측을 진행하였다. 따라서 본 연구에서는 파고, 파 주기, 파향, 풍속, 풍향, 유속, 유향, 수온 등 8가지 해기상 데이터를 딥 러닝 기법으로 예측하였으며, 이때 상관 분석 (correlation analysis)를 통해 해기상 데이터 간의 연관성을 파악한 후 딥 러닝 모델의 입력값을 선정하였다. 해기상 데이터의 예측을 위한 딥 러닝 모델로서 DFN (Deep Neural Network)과 LSTM (Long Short-Term Memory)를 이용하였으며, 학습을 위한 해기상 데이터는 ECMWF (European Centre for Medium-Range Weather Forecasts)와 HYCOM (Global Hybrid Coordinate Ocean Model)로부터 확보하였다. 예측 모델의 정확도를 높이기 위해 확보한 해기상 데이터에 존재하는 이상점 (outlier)을 제거하였으며, 또한 각 해기상 데이터별로 딥 러닝 모델, 입력 데이터의 종류, 입력 데이터의 기간, 출력 데이터의 기간 등을 변경하며 각 요소에 대한 모델의 정확도를 분석하였다. 본 연구에서는 해기상 데이터의 예측 모델을 전 세계 전 해역의 해기상 데이터를 예측하는데 활용하였으며, 적용 결과 그 효용성을 확인하였다.
Keywords: Ocean Environmental Data (해기상 데이터), Deep learning (딥 러닝), DFN (Deep Neural Network), LSTM (Long Short-Term Memory)
Publication Date 2019-05-17

이준범, 노명일, 김기수, 손명조, 한기민, 김대헌, "딥러닝 기법을 이용한 해기상 데이터 예측", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 491, 2019.05.15-17


  1. No Image 04Mar
    by
    in Domestic Conference

    이혜원, 구남국, 하솔, 노명일, "다물체계 동역학을 이용한 해양 플랜트의 라이저 인장 장치의 동적 거동 해석", 2014년도 한국CAD/CAM학회 동계학술발표회, pp. 771-780, 평창, 2014.02.12-14

  2. No Image 04Dec
    by
    in Domestic Conference

    이준채, 차주환, 노명일, 황지현, 이규열, "LNG FPSO Topside 의 Liquefaction Process 에 대한 Pre-FEED 단계에서의 Dual Mixed Refrigerant Cycle 최적 운전 조건 결정", 2010년도 대한조선학회 추계학술발표회, 창원, pp. 693-707, 2010.10.21-22

  3. No Image 05Dec
    by
    in Domestic Conference

    이준채, 구남국, 황지현, 노명일, 이규열, "LNG FPSO 액화 사이클의 최적 합성", 2011년도 대한조선학회 추계학술발표회, 목포, pp. 243-249, 2011.11.03-04

  4. No Image 05Dec
    by
    in Domestic Conference

    이준채, 구남국, 황지현, 노명일, 이규열, "LNG FPSO 액화 공정 사이클의 최적 설계", 2012년도 한국CAD/CAM학회 학술발표회, 평창, pp. 214-222, 2012.02.01-03

  5. No Image 05Dec
    by
    in Domestic Conference

    이준채, 구남국, 이규열, 차주환, 노명일, 황지현, "LNG FPSO Topside 액화 공정 Dual Mixed Refrigerant Cycle의 최적 운전 조건 결정", 2011년도 해양플랜트설계연구회 춘계 워크샵, 울산, pp. 1-23, 2011.07.07-08

  6. No Image 20Oct
    by
    in Domestic Conference

    이준범, 노명일, 김기수, 한기민, 이갑헌, "딥 러닝을 이용한 해기상 및 소요 마력 예측 모델 개발", 2020년도 대한조선학회 추계학술발표회, 창원, pp. 453-454, 2020.11.05-06

  7. No Image 17Dec
    by
    in Domestic Conference

    이준범, 노명일, 김기수, 한기민, 이갑헌, "딥 러닝 기반 해기상 및 선박 소요 마력 예측", 2020년도 한국CDE학회 동계학술발표회, 평창, pp. 343, 2020.02.05-08

  8. No Image 02Apr
    by SyDLab
    in Domestic Conference

    이준범, 노명일, 김기수, 손명조, 한기민, 김대헌, "딥러닝 기법을 이용한 해기상 데이터 예측", 2019년도 대한조선학회 춘계학술발표회, 제주, pp. 491, 2019.05.15-17

  9. No Image 16Aug
    by
    in Domestic Conference

    이준범, 노명일, 김기수, 손명조, 한기민, 김대헌, "딥 러닝 기반 해기상 및 소요 마력 예측", 2019년도 한국CDE학회 하계학술발표회, 제주, pp. 235, 2019.08.19-22

  10. No Image 16Oct
    by
    in Domestic Conference

    이준범, 노명일, 김기수, 김상엽, 한기민, 김대현, "딥 러닝 기법을 이용한 선박의 소요 마력 예측", 2019년도 대한조선학회 추계학술발표회, 경주, pp. 523, 2019.10.24-26

Board Pagination Prev 1 ... 8 9 10 11 12 13 14 15 16 17 ... 29 Next
/ 29

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소