Skip to content
Extra Form
Abstract There is a growing demand for autonomous navigation technologies capable of operating effectively in complex dynamic environments where ships interact with various ships and maritime obstacles. To avoid collisions and ensure safe navigation, the own ship (OS) must plan routes that consider the potential risks posed by surrounding target ships (TSs). Classical methods based on reciprocal velocity obstacles (RVO) offer the strength of providing a safe speed zone and enabling real-time motion control by selecting the optimal speed within this zone. However, due to their rule-based nature, these methods may result in overly conservative route planning or become vulnerable to inaccuracies in the positions of TSs. Furthermore, planned routes may oscillate or fail to avoid collisions in complex and dynamic environments with many variables. On the other hand, collision avoidance methods using deep reinforcement learning (DRL) show strength in handling complex environments due to their ability to learn and adapt. However, these methods may sometimes fail to find an optimal policy or converge to an unstable state, potentially compromising safety and efficiency. In this study, we proposed a method for collision avoidance that combines classical RVO-based methods with the DRL. We represented the states of the OS and TSs as RVO vectors and incorporated them into a DRL model. This DRL model, reflecting the characteristics of the RVO, can guide the OS to navigate towards its destination safely and efficiently while adhering to collision risk assessment metrics and the COLREGs (Convention on the International Regulations for Preventing Collisions at Sea). By applying the proposed method to various collision scenarios in virtual environments, the results showed that even in complex maritime environments with surrounding TSs, the OS can reliably avoid collisions and navigate toward its intended destination.
Publication Date 2025-06-01

Seong-Won Choi, Myung-Il Roh, In-Chang Yeo, "A Method for Collision Avoidance of an Autonomous Ship in Dynamic Environments", p.?, Proceedings of ISOPE 2025, Goyang, Korea, 2025.06.01-06


List of Articles
번호 분류 제목 Publication Date
552 Domestic Conference 김진혁, 노명일, 여인창, "불확실성을 고려한 선형 성능 예측 근사 모델의 자동 개선 방법", 2025년도 한국CDE학회 동계학술발표회, 모나용평, 2024.02.19-02.22 file 2025-02-20
551 International Conference In-Chang Yeo, Myung-Il Roh, , Jin-Hyeok Kim, In-Su Han, Dong-Woo Kim,"A Methodfor Optimizing Pump Tower Design in LNG Tanks Considering Structural Safety", PRADS 2025, Ann Arbor, United States, pp. ??, 2025.10.19-23 2025-10-23
550 International Conference In-Su Han, Myung-Il Roh, Min-Chul Kong, "A Generative AI-based Q&A System for Design Regulations", Proceedings of International Symposium on PRADS 2025, Ann Arbor, United States, pp. ??, 2025.10.19-23 2025-10-19
549 Domestic Conference 김하연, 안도혁, 공민철, 여인창, "자율 운항 선박의 성능 검증을 위한 통합시험 환경", 2025년도 한국CDE학회 동계학술발표회, 모나용평, 2024.02.19-02.22 file 2025-02-20
548 Domestic Conference 최성원, 노명일, 여인창, "속도 제어를 고려한 심층 강화 학습 기반 자율 운항 선박의 충돌 회피 방법", 2025년도 한국CDE학회 동계학술발표회, 모나용평, 2024.02.19-02.22 file 2025-02-20
547 Domestic Conference 김윤식, 노명일, 안도혁, 김하연, 여인창, 손남선, "해상 장애물 추적을 위한 개선된 위치 예측 방법", 2025년도 한국CDE학회 동계학술발표회, 모나용평, 2024.02.19-02.22 file 2025-02-20
» International Conference Seong-Won Choi, Myung-Il Roh, In-Chang Yeo, "A Method for Collision Avoidance of an Autonomous Ship in Dynamic Environments", p.?, Proceedings of ISOPE 2025, Goyang, Korea, 2025.06.01-06 2025-06-01
545 Domestic Conference 안도혁, 노명일, 여인창, 이혜원, 전도현, "다양한 해상 상태를 고려한 해상 크레인의 심층 강화 학습 기반 제어 방법", 2025년도 한국CDE학회 동계학술발표회, 모나용평, 2024.02.19-02.22 file 2025-02-20
544 Domestic Conference 한인수, 노명일, 공민철, "선박 규정 검색을 위한 생성형 AI 기반 질의 응답 시스템 구축", 2025년도 한국CDE학회 동계학술발표회, 모나용평, 2024.02.19-02.22 file 2025-02-20
543 Domestic Conference 공민철, 노명일, 한인수, 최성원, 김미진, 김정연, 이인석, "효율적인 배관 라우팅을 위한 선체 내 공간 분할 방법", 2025년도 한국CDE학회 동계학술발표회, 모나용평, p. ?, 2024.02.19-02.22 2025-02-21
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 56 Next
/ 56

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소