Skip to content
Extra Form
Abstract Drawings such as piping and instrument diagrams (P&ID) or ship safety plans have various equipment and components (lines, signs, and text). Every drawing has rules to express these objects with specific symbols. Generally, these drawings are very complex because they are large in size and consist of relationships between several objects. Therefore, the drawing investigators spend countless time and labor.
For the above reasons, this study uses a deep learning model that has been actively researched recently. An object detection model based on deep learning can quickly find various objects within the drawing. However, the drawing differs from the common images in size and characteristics, generally used as an input in deep learning. Therefore, we proposed a series of procedures for applying the deep learning model to the drawing. This study proposed an object detection algorithm specialized for drawings by combining the non-maximum suppression (NMS) algorithm with the sliding window algorithm. YOLOv7 was selected as an object detection model, which showed the best accuracy by comparing various deep learning models. First, we made a detection window that slides on the drawing. Then, the NMS algorithm was applied to remove duplicate objects from the overall detection results.
Training a deep learning model requires a large amount of training data, but it takes a lot of time to label drawings manually. Therefore, we proposed a data generation model for training data. Objects and background images were extracted from several drawings, and training data were generated by randomly mixing them as material and base. The optimal parameters for training data were selected by comparing the accuracy of the drawings. All models used in this study were trained only with the generated virtual training data.
Knowing how many objects are placed in each division of the ship is important in the inspecting process. Therefore, we developed an algorithm that automatically recognizes the division of the ship and organizes the types and numbers of equipment placed in each division. Furthermore, we developed an algorithm that can obtain the connection relationship between objects and detailed specification of objects by recognizing lines and texts connected to each object.
The method proposed in this study was applied to several actual plans. We confirmed the effectiveness of the proposed method by obtaining high average accuracy. By applying the proposed method, the review procedure, which took several days, can be reduced dramatically to a few minutes per drawing.
Publication Date 2023-06-22
Min-Chul Kong, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, Jeongyoul Lee, Jongoh Kim, Gapheon Lee, "A Detection Method of Objects with Text in Drawings Based on Deep Learning", Proceedings of ISOPE(International Society of Offshore and Polar Engineers) 2023, Ottawa, Canada, 2023.06.19-23

List of Articles
번호 분류 제목 Publication Date
467 Domestic Conference 김동우, 노명일, 전도현, 우선홍, 이혜원, 김용태, "딥 러닝을 이용한 멤브레인 타입 LNG선 화물창의 1차 방벽의 형상 최적화 방법 ", 2023년도 한국CDE학회 동계학술발표회, 평창, pp. 275, 2023.02.08-11 file 2023-02-10
466 Domestic Conference 김진혁, 노명일, 여인창, "설계 요구 조건을 고려한 국부 변형 기반 상선의 선형 변환 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, pp. 47, 2023.02.08-11 file 2023-02-09
465 Domestic Conference 이혜원, 노명일, 함승호, 남보우, "LNG 로딩 암의 최적 설계를 위한 동적 거동 해석 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, pp. 108, 2023.02.08-11 file 2023-02-09
464 Domestic Conference 전도현, 노명일, 이혜원, 유동훈, "연안 적용을 위한 충돌 위험도 산정 및 충돌 회피 경로 생성 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, pp. 49, 2023.02.08-11 file 2023-02-09
463 Domestic Conference 김하연, 노명일, 이혜원, 조영민, "센서 데이터를 이용한 선박의 추적 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, pp. 109, 2023.02.08-11 file 2023-02-09
462 Domestic Conference 조영민, 노명일, 이혜원, 공민철, "자율 운항 선박을 위한 개선된 센서 융합 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, pp. 107, 2023.02.08-11 file 2023-02-09
461 Domestic Conference 하지상, 노명일, 공민철, 김기수, "격벽, 장비 및 배관을 고려한 선박의 배치 설계 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, pp. 8, 2023.02.08-11 file 2023-02-09
460 Domestic Conference 여인창, 노명일, 이혜원, 유동훈, "선박용 서라운드 뷰 영상의 자동 생성 방법", 2023년도 한국CDE학회 동계학술발표회, 평창, pp. 45, 2023.02.08-11 file 2023-02-09
» International Conference Min-Chul Kong, Myung-Il Roh, In-Chang Yeo, Ki-Su Kim, Jeongyoul Lee, Jongoh Kim, Gapheon Lee, "A Detection Method of Objects with Text in Drawings Based on Deep Learning", Proceedings of ISOPE 2023, Ottawa, Canada, 2023.06.19-23 file 2023-06-22
458 International Conference Myung-Il Roh, "Applications of Deep Learning in Ship Design, Production, and Operation Stages", Proceedings of ICDM(International Conference on Decarbonization and Digitalization in Marine Engineering) 2022, Siheung, Korea, 2022.04.28-29 2022-04-29
Board Pagination Prev 1 ... 3 4 5 6 7 8 9 10 11 12 ... 54 Next
/ 54

Powered by Xpress Engine / Designed by Sketchbook

sketchbook5, 스케치북5

sketchbook5, 스케치북5

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소